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In the photon number distribution p(9,k) of the micromaser, distinct structures are formed 
by the ridges connecting the peaks in the 9 - k space. We refer to these structures as phases. 
By a simple condition we can distinguish between "semiclassical" and "quantum" regimes of 
operation near and far above threshold, respectively. In the semiclassical regime, the equations 
of state of the phases 9 = 9{k) are monotonous and coincide with the steady state solutions of 
the semiclassical theory. They reflect typical features of the micromaser dynamics. The transition 
jumps, e. g., between the phases decrease with increasing pumping parameter 9, signifying the onset 
of the Jaynes-Cummings collapse. On increasing 9 further, the phases first disintegrate and then 
restructure into new kinds of phases in the quantum regime. The equations of state are no longer 
monotonous. Large single peaks, the quantum island states (QIS), develop in the neighborhoods 
of minima. The system undergoes oscillations between two kinds of quantum island states, Q I S -

and QIS+, as a function of 9. The disintegration and transformation of phases recur periodically as 
9 is varied, and the phases in the semiclassical region are followed by consecutive phase structures 
in the quantum regime. The subsequent collapses and revivals of phases are directly connected 
to the Jaynes-Cummings collapse and revival. The observation of these phase structures and the 
accompanying QIS is experimentally feasible. 
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1. Introduction 

One of the most extensively studied systems in 
quantum optics is the so-called micromaser, or one-
atom maser [1]. It realizes the fundamental Jaynes-
Cummings model [2] by coupling a single quantized 
mode of a high-Q microwave cavity to a sparse beam 
of two-level atoms. Due to the relatively straight-
forward theory [3, 4] and experimental accessibil-
ity, it has proved to be particularly well suited to 
study quantum effects in the interaction between ra-
diation and matter. Genuine quantum features have 
been predicted and observed, such as, e. g, the Jaynes-
Cummings collapse-revival [5], nonclassical photon 
statistics including number states [6], trapping states 
[7], quantum island states [8], and macroscopical su-
perpositions [9]. It has also been suggested to build 
macroscopic correlated systems by coupling two mi-
cromasers together to study nonlocal quantum cor-
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relations between separate fields [10], or to couple 
them to other quantum devices in, for example, atomic 
interferometers to test the principle of complemen-
tarity [11], 

In the present paper we study the photon statistics 
of a micromaser pumped by a monoenergetic beam 
of two-level atoms with Poissonian arrival statistics. 
It is shown that the photon distribution consists of 
distinct phases. We study their structure in the two-
dimensional space given by the pump parameter 9 
and the photon number k. A correspondence between 
the quantum [3] and semiclassical [4] theories of the 
problem will be pointed out and used to find the equa-
tion of state of the phases. The photon statistics of 
the system can be separated into "semiclassical" and 
"quantum" regimes with very different behaviors due 
to the crucial role of the quantized nature of the field in 
the latter regime. We show that this picture of phase 
structures in the photon statistics can explain sev-
eral features of the micromaser both qualitatively and 
quantitatively. 

In Sect. 2 and 3 we investigate the semiclassical 
and quantum regimes of the system, respectively. Sec-
tion 4 is devoted to summary and discussions, while 
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in the Appendix we derive some of the necessary for-
mulas used in the paper. 

2. The Semiclassical Regime 

Let us consider a micromaser [1] where a sin-
gle quantized mode of a high-Q microwave cavity 
is pumped by a monoenergetic beam of excited two-
level atoms. Assuming that there is at most one atom 
present in the cavity at a time and that the interaction 
time, r , is much shorter than the cavity lifetime, I /7 , 
the photon statistics can be calculated as [3] 

Pn(0)=Po(0)l[E(k,0), (2.1) 
k= 1 

where 

and 

k{rib + 1) lib + 1 

ß(k, 6) = sin2 (0y/k/Nt 

(2.2) 

(2.3) 

Here, the average number of atoms inside the cavity 
during the cavity lifetime is given by Nex = r /7, 
where r is the average rate of injection of the atoms, 
and the pumping parameter is defined by 0 = gr^Nex 
where g is the atom-field coupling constant. Finite 
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Fig. 1. Density plot of the photon statis-
tics in the semiclassical regime for 
AREX = 100 and üb = 0.5. Lighter points 
in the figure show higher probabilities. 
Bright ridges form a phase structure of 
the system. 
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Fig. 2. Stable and unstable solutions of the semiclassical 
theory depicted by light solid and dotted lines, respectively. 
The stable solutions correspond to the bright ridges in Fig-
ure 1. The average photon number (n ) , calculated from the 
photon statistics of Fig. 1 is represented by a heavy solid 
line showing the transitions that the system makes between 
the phases as a function of the pumping parameter 6. 

thermal radiation is also assumed, specified by the 
average number of thermal photons Tib-

Figure 1 indicates that the above photon statistics 
specifies an ensemble of phases in the 6-k space where 
small changes in the pumping parameter 0 result in 
small changes in the photon number k. The smooth 
evolution along the phases is periodically interrupted 
by abrupt transitions between them at certain criti-
cal values of 0. Their structure is clearly reminiscent 
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Fig. 3. Photon statistics for 9 = 60 and 120 depicted by 
dotted and solid lines, respectively. The envelope of the 
peaks is a bell-shaped curve that is fairly independent of 9. 

of the (multi-) stable steady states of the semiclassi-
cal theory [4], illustrating the connection between the 
quantum and the semiclassical approach (cf. Figs. 1 
and 2). Employing the stable (unstable) solutions for 
the semiclassical steady states, this correspondence 
can be used to determine the location of the peaks 
(minima) and the equation of state for the phases 
of the photon statistics. It is, however, unique to the 
quantum theory to provide a probability distribution 
and to account for the effects originating in the shape 
of the photon statistics. This is beyond the grasp of 
the semiclassical approach. Let us now review some 
of these quantum effects. It can be seen in Figs. 1, 
6 and 7 that, apart from some exceptional cases, the 
photon statistics is confined to a narrow region of 
the photon number k, centered around approximately 
40% of iVex. The envelope of the peaks is a bell-
like curve (see Fig. 3) that is fairly independent of 0. 
Multipeaked photon statistics arise when the phases 
populated in this region of k overlap at a given pump 
parameter 6. This overlap forces the system to switch 
from one phase to the next via a first order phase 
transition accompanied by a sudden increase in the 
photon number noise [1, 3, 4, 8]. Figure 2 illustrates 
how the quantum treatment results in a suppression of 
the multistable behavior. The average photon number 
becomes single-valued as it selects between the avail-
able branches of the semiclassical theory according 
to the probability distribution of the quantum theory. 
It can be seen, however, that the phase transitions de-
cay to a ^-independent constant value as the number 
of overlapping phases increases. This occurs because, 
due to the increasing number of the peaks under the 
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Fig. 4. Density plot of the photon statistics for 7Vex = 30 and 
n b = 0. The distinct bright spots are the probability peaks 
of the trapping states. The dark lines parallel to the k-axis 
above the peaks indicate how the probability distribution 
is blocked and the system is forced back to a lower order 
phase in this case. 

bell-curve, the average photon number becomes less 
sensitive to the appearances of new peaks. This ef-
fect is directly related to the Jaynes-Cummings col-
lapse [5] since the atomic inversion, w, is a simple 
function of the average photon number (n) given by 
w = 1 - 2((n) - nb)/iVex (see derivation in the Ap-
pendix). In the case of no thermal radiation üb = 0, 
the trapping states play a role [7]. They significantly 
modify the phase structure by trapping the system in 
a lower order phase in certain narrow regions of the 
pumping parameter 6 (see Figure 4). 

As we mentioned above, we can make use of 
the correspondence between the quantum and semi-
classical theories to find the equation of the phases. 
The semiclassical steady states are determined by the 
equation (see [4] and an alternative derivation in the 
Appendix) 

0^(ko+ \)/Nex = Arc sin - nh)/Nex^ + /TT, 

(2.4) 

where the minus (plus) sign corresponds to the stable 
(unstable) solutions depicted by solid (dotted) lines in 
Fig. 2, while / = 0, 1, 2,... enumerates them. It can be 
seen by comparing Figs. 1 and 2 that the peaks (min-
ima) of the photon statistics coincide with the stable 
(unstable) solutions. Equation (2.4) can be simplified 
if we assume a small number of thermal photons, 
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nh « 1, and also 1 < k0 < iVex. This latter assump-
tion simply accounts for the photon statistics being 
confined to a narrow region of the photon number 
around 0.4 Nex. This way, the first term on the right 
hand side of (2.4) can be reduced to T\A-o/^ex- On 
the left hand side we can neglect the +1 provided 

0>/(fco + D/We* " O y / h / N a « 1 (2 .5) 

in a vicinity of ko- This difference can be approxi-
mated with 0y/4koNex for k0 1, yielding the fol-
lowing condition for the pumping parameter: 

9 « y/koNex. (2-6) 

In this region of the parameters the quantized nature 
of the field does not play a significant role and, there-
fore, we call it the "semiclassical" regime of the mi-
cromaser. Since there cannot be peaks for ko > Ncx 

[8], this condition tells us in short that 9 cannot be 
larger than Nex in this regime. Using these approxi-
mations, (2.4) reduces to the simple expression 

/ / \ 2 

fco±=iVexf ^ y J , (2 .7) 

determining the location of the peaks and minima of 
the photon statistics ko± for a given 9 in the semi-
classical regime taking the plus and minus signs, re-
spectively. The system exhibits a structure consisting 
of continuous and smooth phases here, as depicted 
in Figs. 1, 2 and 6. However, as we will show later 
on, these phases will be disintegrated and reshaped at 
high pumping parameters beyond the region of (2.6) 
where the discreteness of the photon number becomes 
significant. 

The same result can be obtained by using the func-
tion E{k, 9) from the quantum solution, as given 
by (2.2). One finds a peak (minimum) of the photon 
statistics at a photon number, ko, if E(k0.9) > 1 (< 1) 
and E(ko +1,9) < 1 (> 1). In the case when the change 
in the function E{k, 9), produced by one discrete step 
of the photon number from ko to ko + 1, is small, the 
quantum nature of the radiation field is not significant 
and these two conditions can be approximated in a 
neighborhood of ko 1 by 

E(k0,0) = 1 and ± I — j (k0.9) > 0. (2.8) 
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Fig. 5. The function E(k, 9) and its discrete counterpart 
Ek(d), depicted by solid and dashed lines, respectively, for 
8 = 40, iVex = 100 and n b = 0.5. For these parameters the two 
functions agree rather well. The agreement will disappear 
for larger 9. 

Here the upper (lower) sign corres ponds to a peak 
(minimum). In order to specify the region where 
these conditions are valid and to visualize the ef-
fect of the quantized photon number let us define 
the discrete counterpart, Ek{9), of the continuous 
function E{k, 9), as the curve connecting the discrete 
points (k,E(k,9)) taken at integer values of k, by 
straight lines. The continuous function E(k, 9) oscil-
lates faster for larger 9 (and smaller k), suggesting 
that Ek(9) will deviate from it high above threshold 
(and at small photon numbers). We find that Ek{9) 
follows E(k,9)slowly with k in a neighborhood of 
ko, i. e., if the conditions given by (2.5) and (2.6) for 
ko » 1 apply. In this region of the parameters, i. e., in 
the semiclassical regime, Ek{9) can be approximated 
by the continuous function E(k, 9), and (2.8) can be 
used. An example for this case is depicted in Fig. 5, 
while the deviation between the two functions is ap-
parent in Figs. 9 and 10 that will be discussed later 
on in detail. One can see in Fig. 5 that E{k. 9) is an 
oscillatory function and its minima are given by the 
curves 

92
mink min = (/7r)2iVex, (2.9) 

in the 9-k space, where / is an integer. Expanding 
E(k, 9) with respect to 9 for a given ko around one of 
the minima #min, we find that E < 1 if (9mjn - 1 < 
9 < #min + 1, provided ko «C Nex. The derivative of 
E(k,9) with respect to k in the vicinity of k0 > 1 
at the lower (upper) end of this interval is negative 
(positive). Thus, considering the above conditions for 
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Fig. 6. Density plot of the pho-
ton statistics for Nex = 100 and 
rib = 0.5. The bright ridges of 
the semiclassical regime become 
diffuse for large 6 as the system 
approaches the quantum regime. 
They disintegrate because, due to 
the increased slope of the phases, 
the discreteness of the photon 
number becomes more significant. 
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Fig. 7. Density plots of three regions of the photon statistics in the quantum 
regime of s = 1 for Nex = 100 and rib = 0.5. Bright ridges and well localized 
spots are apparent, showing the phase structure and the accompanying quantum 
island states of the system, respectively . 

peaks (minima) of the photon statistics (2.8), we find 
for 1 •C ko Nex that they are located on curves 
shifted downward (upward) by 1 with respect to the 
curves of the minima of the function E(k, 9). Carrying 
out this shifting in (2.9), we reobtain the same result 
as in (2.7). It determines the location of the peaks and 
the minima of the photon statistics in the so-called 
semiclassical regime of the micromaser specified by 
the condition (2.6). 

3. The Quantum Regime 

It can be seen in Fig. 6 that the photon statistics be-
come diffuse as one increases the pumping parameter 
9 beyond the semiclassical regime. The reason for this 
is that the granular feature of the phases originating in 
the discreteness of the photon number becomes sig-

nificant as a result of their increased slope. Namely, 
the branches of the stable steady state solutions of the 
semiclassical theory get closer to each other than one 
quantum of the photon number, resulting in a disinte-
gration of the phases of the photon statistics. Based on 
the dominant role of the quantized nature of the radi-
ation field we call this region of the parameters where 
(2.6) does not apply the "quantum regime" of the mi-
cromaser. However, as it can be seen in Fig. 7 the frag-
ments of the disintegrated phases of the semiclassical 
regime form new structures at larger pumping param-
eters. The diffuse region is followed by an ensemble 
of new kinds of apparently smooth phases accompa-
nied by sharp single peaks, the so-called "quantum 
islands" [8]. The formation of the new phases can be 
understood as another way to connect the location of 
the nonzero probabilities of the disintegrated phases 
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on the discrete lattice of the photon number. These 
new connection rules can be determined by introduc-
ing a new parametrization of the phases. Since there 
are several ways to connect the probability points, 
therefore, there are several possible connection rules 
and phase parameters that can be introduced. Let us 
define a new parameter L as L = I — sko, where ko 
is the photon number, 5 = 0, 1, 2,... parametrizes the 
different connection rules and L is integer. The / pa-
rameter of the semiclassical regime can be reobtained 
for 5 = 0 , while several new ones are given by 5 > 0. 
Substituting the new I into (2.4) we obtain 

0 20 40 60 80 

Fig. 8. Phase structure given by 
(3.1), where the phases and the 
minima are depicted by light solid 
and dotted lines, respectively. The 
light solid lines correspond to the 
bright ridges in Figure 7. The av-
erage photon number, (n) , calcu-
lated from the photon statistics of 
Fig. 7 is represented by a heavy 
solid line. The phase transitions 
of the system between the quan-
tum islands as a function of 9 are 
clearly visible in the middle figure. 

9^(k0 + l)/Nn = Arc sin ^(k0 - nb)/Nex) 

+ (L + sko)ir. 
(3.1) 

number sides correspond to the upper (lower) sign in 
(3.1). The average photon number is depicted by a 
thick solid line in Figure 8. The disintegration of the 
phases of the semiclassical regime, 5 = 0, led to the 
formation of the 5 = 1 quantum phases. This is true 
in general. A disintegrated phase structure of order 5 
is followed by a set of new phases and quantum is-
lands of order 5 + 1. The single semiclassical regime 
is followed by several consecutive quantum regions. 

It can be seen in Figs. 7 and 8 that the phases in the 
quantum regime are not monotonous curves in the 9-k 
space as they were in the semiclassical region. Their 
minima, i. e. the minima of the equations of state of 
the phases 6 = 9(k), are located at 

Since the disintegration of the old phases and the for-
mation of the new ones is a direct consequence of 
the quantized nature of the radiation field, (3.1) has 
nothing to do with the semiclassical theory unless 5 
= 0. However, it can now be used to find the location 
of the peaks (minima) of the photon statistics in the 
quantum regime the same way as we used (2.4) before 
for the semiclassical region. The correspondence be-
tween (3.1) and the quantum phases is apparent in the 
examples depicted in Figs. 7 and 8 for 5 = 1. The solid 
(dotted) lines in Fig. 8 coincide with the peaks (min-
ima) of the photon statistics in Figure 7. The curves 
with a solid branch on their lower (higher) photon 

kmin = L/s and 9mm = 2xy/sLN^ T 1, (3.2) 

provided 1 A:MIN <C AR
EX. These points are im-

portant because, as we will see later on, large single 
peaks, the quantum islands, can arise in their vicinity 
due to the small slope of the phases. In order to under-
stand this and to find a compact formula for the peaks 
(minima) of the photon statistics, we make use of the 
function E(k.9) and its discrete counterpart Ek(9), 
again. These functions are useful in explaining why 
the two branches of each curve in Figure 8 alterna-
tively represent peaks (solid lines) and minima (dot-
ted lines) of the photon statistics. The equation for the 
minima of E(k\ 9), in terms of the new parameter L, 
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can be obtained from (2.9) as 

[ ( L + ) 7T] i V e x . (3.3) 

As a consequence of the nonzero 5, the curves 9 = 
6(h), describing the minima of the function E(k, 9), 
as obtained from (3.3), themselves exhibit minima in 
the 9-k space at 

ÂMIN = L/s and 0MIN = 2ityJsLNtx, (3.4) 

provided 1 A:MIN- The location of the peaks (min-
ima) of the photon statistics can now be calculated 
similarly to the semiclassical region by shifting the 
curves of (3.3) by 1 provided &MIN N tx. Thus, 
we reobtain the results for the extremal points of the 
phases/minima given by (3.2) above as kmm = /cmin 
and 9mm = 0MIN T 1- However, due to the non-
monotonous feature of the curves, in this case a shift 
downward (upward) will give us the peaks (minima) 
only for photon numbers, k < &MIN> while opposite 
shifts are necessary for k > &MIN- This is why the 
two branches of the curves in Fig. 8 alternatively rep-
resent the peaks and minima depicted by solid and 
dotted lines, respectively. Therefore, the equations of 
the phases of order s are given by 

(9±\)2ko=[(L + sko)]2Ne (3.5) 

where the upper (lower) sign corresponds to the peaks 
(minima) of the photon statistics for the lower region 
of the photon numbers, k < &MIN> while for the upper 
part of the photon numbers, k > £MIN> the ± signs 
need to be switched to =p. Combining these condi-
tions, we finally obtain for a given 9 the location of 
the peaks along one of the phases of the photon statis-
tics in the quantum regime as 

ko± = 
^MIN 

,(3.6) 

where &MIN and #MIN determine via s (> 0) and L 
the actual phase that we are considering (see (3.4) 
above), and the upper (lower) sign gives us a peak 
below (above) the minimum A:MIN of the actual phase. 
The expression for the minima of the photon statistics 
can be obtained by switching the two signs, ± —• 

It can be seen in Fig. 7 that all the phases in the 
quantum regime exhibit sharp peaks in the vicinity 
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Fig. 9. The functions Ek(9) in the upper, and the corre-
sponding photon statistics in the lower part of the figure 
for four different pumping parameters: 9 = 286 and 288, 
depicted by solid and dotted lines in the left, and 9 = 481 
and 483, depicted by solid and dotted lines in the right part 
of the figure, respectively. 
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Fig. 10 The functions Ek(9) in the upper, and the corre-
sponding photon statistics in the lower part of the figure 
for four different pumping parameters: 9 = 393 and 395, 
depicted by solid and dotted lines in the left, and 9 = 397 
and 399, depicted by solid and dotted lines in the right part 
of the figure, respectively. 

of the minima of their state equation lines. Suppress-
ing everything else at optimum pumping they are the 
only significant features of the photon statistics (see 
Figures 9 - 11). These are the so-called "quantum is-
land states" (QIS) discussed in [8] in detail. It follows 
from the product form of (2.1) that high peaks in 
the photon statistics are generated when the oscilla-
tions of Ek(9), as a function of k, are slow. There 
are long intervals in this case where Ek(9) is steadily 
smaller (larger) than 1 and, consequently, the proba-
bility pk(0) is monotonously decreasing (increasing). 
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Fig. 11 Three dimensional plot of the photon statistics ex-
hibiting consecutive quantum island states, Q I S - and QIS+ . 

This, after normalization, will result in a large peak 
at the beginning (end) of the in terval. One would 
expect from (2.3) that the oscillations are faster for 
larger pumping parameter 9, resulting in rapidly os-
cillating photon statistics. However, this is not so. 
Although the oscillations of E(k, 9) are faster, its dis-
crete counterpart Ek{9) can deviate from it in the 
quantum regime as a consequence of the discreteness 
of the photon number. The oscillations of Ek{9) are 
particularly slow in the neighborhoods of the minima 
of the phases in the 9-k plane due to the small slope 
of the phase curves. Some examples are depicted in 
Figs. 9 and 10 exhibiting long intervals where the 
Ek(9) functions are steadily smaller or larger than 
1, resulting in the corresponding QIS shown under-
neath. The two kinds of slowly varying intervals can 
be interpreted as two special cases of the Moire-effect 
between the oscillations of E(k: 9) and the discrete pe-
riodic lattice of the photon number. Suppressing most 
of the photon statistics, this effect plays the role of 
a trapping mechanism making the QIS the "trapping 
states" in the quantum regime. This trapping effect 
has obviously nothing to do with the one in [7]. Here, 
the QIS are the consequence of the quantized nature of 
the radiation field and the coherent oscillatory nature 
of the atom-field interaction, reflected by the function 
/3{k.9) in (2.3). Just as the entire phase structure of 

the photon statistics, these states, too, are insensitive 
to (a moderate amount of) thermal radiation. 

The two kinds of slowly varying "Moire-intervals" 
also suggest that there are two kinds of quantum island 
states, QIS - and QIS+, depending whether Ek{9) is 
smaller or larger than 1 in that particular interval, re-
spectively. Therefore, QIS - (QIS+) are sitting on the 
low (high) photon number sides of the phase curves, 
close to their minima (cf. Figs. 7 and 8). Their exact 
locations can be calculated using (3.6) provided 9 is 
known. However, the optimum pumping, 0QIS, that 
produces the largest single peaks is, in general, diffi-
cult to determine due to the complicated structure of 
Ek(9). Considering Figs. 7 and 8 it can be said that 
the largest peaks can be produced using a #QIS that 
is equal or slightly smaller than the minimum of a 
phase curve, (9mm. Using 9mm

 = 0 M I N T 1. we obtain 
the optimum pumping to produce QIS as 

9qi$± « 0MIN 1. (3.7) 

where the upper (lower) sign corresponds to QIS+ 

(QIS -) , and #MIN is given in (3.4). However, these 
are only the possible locations of the QIS. Although 
a long constant interval of Ek(9) in the vicinity of 
the minimum of a phase is necessary for the build-up 
of a large QIS-peak, it is not, in general, sufficient. 
As it can be seen in the examples of Fig. 9. QIS -

(QIS+) cannot be generated on the high (low) pho-
ton number side of the photon statistics. This is a 
consequence of the product form of the photon statis-
tics given by (2.1) and the confinement of the photon 
statistics around 0.4 Nex. There is no such problem 
in Figure 10. Both QIS" and QIS+ can be produced 
in that region of the pumping where the minimum 
of the phases (and the corresponding long interval of 
constant Ek(9)) are situated in the main stream of 
the photon statistics, i. e. around k = 40 in our exam-
ple. Apart from the rapid transitions between them, 
the micromaser resides in either QIS - , or QIS+ (see 
Figs. 7 and 8). Therefore, any pumping will result in 
large single peaks in this region although the optimum 
cases are still determined by (3.7). 

In general, due to the isolated large QIS-peaks, iso-
lated phases become greatly populated in this region 
of 9 at the expense of the others. Similarly to the 
beginning of the semiclassical regime, there is practi-
cally no overlap between the populated parts of these 
dominant phases that makes the phase transitions 
abrupt between them. This suggests the interpretation 
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Fig. 12. Average photon number, (n ) , for Nex = 100 and 
üb = 0.5, showing consecutive collapses and revivals be-
longing to the s = 0 semiclassical and s = 1, 2 quantum 
regimes. 

of the oscillations between the well-defined phases, 
i. e. between QIS - and QIS+, as a revival of the phase 
transitions following the collapse in the semiclassical 
regime. We should remark here that there are apparent 
differences in the characteristics of the phase transi-
tions and their collapses between the semiclassical 
and quantum regimes due to the different origins of 
the phase structures themselves. The phase transitions 
between QIS - and QIS+ result in the oscillations in 
the average photon number, (n), as depicted in Figs. 8 
and 12. Since (n) is simply related to the atomic pop-
ulation (see in the Appendix) the same kind of oscil-
lations can be found in the atomic inversion. There-
fore, the collapse of the oscillations in the semiclas-
sical region and their revival in the quantum regime 
are directly connected to the Jaynes-Cummings col-
lapse and revival effect [5], As we mentioned above 
there are several consecutive structures in the quan-
tum regime parametrized by s > 1 (there is only one 
in the semiclassical regime, s = 0). The disintegration 
and reshaping of the phase structures, therefore, cor-
respond to a collapse in the semiclassical region and a 
sequence of consecutive collapses and revivals in the 
quantum regime, as depicted in Figure 12. 

The different regimes of phases can, especially for 
small A ÊX, overlap. This usually mixes the phase struc-
tures up although, at particular pumping parameters, 
also allows for a production of (incoherently) super-
posed QIS corresponding to different regimes. In the 
example depicted in Fig. 13 the QIS+ around k = 62 
belongs to s = 2 while QIS - around k = 22 belongs to 
5 = 3 resulting in two well-separated coexisting sharp 
peaks. We have chosen ATEX = 100 in this paper in 

Fig. 13. The photon statistics at 9 = 943 exhibit a super-
position of two well-separated quantum island states, QIS+ 

(high) and Q I S - (low photon number), belonging to the 
s = 2 and s = 3 quantum regimes, respectively. 

order to separate the different structures in the quan-
tum regime for better presentation. However, as it 
can be easily seen from (3.4), the same phase struc-
tures and corresponding QIS arise for lower AR

EX, as 
well, at smaller pumping parameters. We, therefore, 
conclude that the experimental realization of these 
features of the photon statistics including, in partic-
ular, the quantum island states is possible especially 
for lower values of Nex. 

4. Summary 

In the present paper, the photon statistics [3] of 
the micromaser [1] have been studied in the two-
dimensional space of the pumping parameter 9 and 
photon number k. We have found that the peaks of 
the probability distribution form various phase struc-
tures in this space transforming into one another as 
the pumping parameter 9 increases. The first group 
of phases is situated in the so-called "semiclassical" 
regime determined by the condition given in equa-
tion (2.6). The curves of these peaks are monotonous 
and coincide with the stable steady state solutions 
of the semiclassical theory [4]. Their structure, to-
gether with their populations, i. e. the probability 
distributions along them, result in typical features 
in the dynamics of the micromaser, such as the col-
lapsing phase transitions in the average photon num-
ber as a function of 9. However, when the pump-
ing 9 increases beyond the semiclassical regime, the 
phases disintegrate due to the discreteness of the 
photon number. The micromaser enters its "quantum 
regime". New kinds of phases are formed from the 
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disintegrated fragments of the old ones that are no 
longer monotonous. Single large probability peaks, 
the so-called "quantum island states" (QIS), can arise 
in the vicinity of their minima that have been absent 
from the semiclassical regime [8]. In the optimum 
cases, the system makes periodic phase transitions be-
tween the two kinds of quantum island states, Q I S -

and QIS+. These oscillations as a function of 9, to-
gether with the collapse of the phase transitions in 
the semiclassical regime, correspond to the Jaynes-
Cummings collapse and revival. The disintegration 
and transformation of the structure of phases recur 
periodically as 9 increases, and the group of phases 
in the semiclassical region is followed by a sequence 
of phase structures in the quantum regime. The mean 
photon number (n) exhibits periodic collapses and 
revivals corresponding to each structure. Experimen-
tal demonstration of these phase structures, including 
the quantum island states, appears feasible using the 
presently available facilities. 
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Appendix 

Let us consider the master equation of the micro-
maser for the interaction-picture field density matrix, 
p, given by [8] 

^ = r(CpC + StpS) + Cp, (A.l) 

where, in the gain term, C = cos (g rVaa l ) , S = 
[sin (gr^ ]a, and the loss term reads as 

(nb + 1)(2apa] — a^ap - paaT) 

+ nb (2a pa — aa f p — paa1) 
(A.2) 

The equation of motion for the average photon num-
ber is [3] 

— (n) = r ^sin (grVaa^j - 7((n) - nb). (A .3) 

The same result can be obtained when, assuming sep-
arable gain and loss cycles in the case of r < 1 / 7 , 
we use the return map given by 

p< f c + 1>=e£/ r(Cp ( f c )C + S y f c ) S ) , (A .4) 

where k is the number of atoms that have traversed the 
cavity and 1/r is the mean time interval between the 
atoms forPoissonian pumping statistics. Approximat-
ing the time derivative of (n) with r((n) ( /c+1) — (n) (k)) 
and assuming 1 / r 1 / 7 , i.e. the cavity lifetime 
much longer than the time interval between the injec-
tion of atoms, we reobtain (A.3). The semiclassical 
rate equation is found by approximating the quan-
tum expectation values by their semiclassical coun-
terparts as 

d n 
— = r sin-igrVn.+ 1) - 7 ( n - n 6 ) , (A .5 ) 
at 

that results in (2.4) at steady state. 
Calculating the atomic density matrix as 

A atom )(r) = Tr(fieid) [U(r)p( atom) 
(A.6) 

where U is the time evolution operator of the Jaynes-
Cummings model, P(atom)(0) and p(0) are the initial 
density matrices for the atom and the field, respec-
tively, the matrix element for the lower atomic state 
is found to be pbb = (sin2 (gr^ provided we 
started with initially excited atoms, paa = 1. This can 
be substituted into (A.3), and we obtain 

d f 
[n) = rpbb - 7((n) - nb). (A.l) 

Therefore, the steady state average photon number. 
(n)ss, is directly connected to the final atomic popula-
tion as Pbb Nex = { n ) s s - n b , resulting in the inversion. 
W = Paa - Pbb, given by 

w= 1 - 2 [n) s "b 
No 

(A.8) 



49 J. A. Bergou and P. Bogär • Phase Structures in the Micromaser Photon Statistics 

[1] For a recent review, see H. Walther, Phys. Rep. 219, 
201 (1992); H. Walther, Phys. Scr. T23, 165 (1988); 
F. Diedrich, J. Krause, G. Rempe, M. O. Scully, and 
H. Walther, IEEE J. Quantum Electron. QE-24, 1314 
(1988). 

[2] E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 
(1963). 

[3] The quantum theory of the micromaser is given by 
P. Filipowicz, J. Javanainen, and P. Meystre, Phys. 
Rev. A 34, 3077 (1986); L. A. Lugiato, M. O. Scully, 
and H. Walther, Phys. Rev. A 36, 740 (1987). 

[4] For the semiclassical theory see A. M. Guzman, P. 
Meystre, and E. W. Wright, Phys. Rev. A 40, 2471 
(1989). 

[5] H. Paul, Ann. Phys. (Leipzig) 11, 411 (1963); J. H. 
Eberly, N. B. Narozhny, J. J. and Sanchez-Mondragon, 
Phys. Rev. Lett. 2 3 , 4 4 (1980). The experimental proof 
of the quantum collapse and revival predicted by the 
Jaynes-Cummings model was reported by G. Rempe, 
H. Walther, and N. Klein, Phys. Rev. Lett. 58, 353 
(1987). 

[6] J. Krause, M. O. Scully, and H. Walther, Phys. Rev. A 
36 ,4547 (1987); P. Meystre, Opt. Lett. 12,668 (1987); 
H. Paul, J. Mod. Opt. 36, 515 (1989); F. W. Cummings 
and A. K. Rajagopal, Phys. Rev. A 39, 3414 (1989). 

[7] P Meystre, G. Rempe, and H. Walther, Opt. Lett. 13, 
1078 (1988). 

[8] P Bogär, J. A. Bergou, and M. Hillery, Phys. Rev. A 
50, 754(1994) . 

[9] P Filipowicz, J. Javanainen, and P. Meystre, J. Opt. 
Soc. Amer. B 3, 906 (1986); J. J. Slosser, P. Meystre, 
and S. L. Braunstein, Phys. Rev. Lett. 63, 934 (1989); 
J. J. Slosser and P. Meystre, Phys. Rev. A 41, 3867 
(1990); J. J. Slosser, P. Meystre, and E. M. Wright, 
Opt. Lett. 15, 233 (1990); P. Meystre, J. J. Slosser, 
and M. Wilkens, Phys. Rev. A 43, 4959 (1991). 

[10] L. Davidovich, A. Maali, M. Brune, J. M. Raimond, 
and S. Haroche, Phys. Rev. Lett. 71, 2360 (1993); J. A. 
Bergou and M. Hillery, Phys. Rev. A 44, 7502 (1991); 
P Bogär, J. A. Bergou, and M. Hillery, Phys. Rev. A 
51, 2396 (1995); P. Bogär and J. A. Bergou, Phys. 
Rev. A 51, 2381 (1995); J. A. Bergou, M. Hillery, and 
P. Bogär, Phys. Rev A. submitted (1998). 

[11] M. O. Scully and H. Walther, Phys. Rev. A 39, 5229 
(1989); M. O. Scully, B.-G. Englert, and H. Walther, 
Nature London 351, 111 (1991); B.-G. Englert, 
H. Walther, and M. O. Scully, Appl. Phys. B 54, 366 
(1992); P. Bogär and J. A. Bergou, Phys. Rev. A 53, 
49 (1996). 


