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In the photon number distribution p(6, k) of the micromaser, distinct structures are formed
by the ridges connecting the peaks in the 6§ — k space. We refer to these structures as phases.
By a simple condition we can distinguish between “semiclassical” and “‘quantum” regimes of
operation near and far above threshold, respectively. In the semiclassical regime, the equations
of state of the phases # = 6(k) are monotonous and coincide with the steady state solutions of
the semiclassical theory. They reflect typical features of the micromaser dynamics. The transition
jumps, e. g., between the phases decrease with increasing pumping parameter 6, signifying the onset
of the Jaynes-Cummings collapse. On increasing 6 further, the phases first disintegrate and then
restructure into new kinds of phases in the quantum regime. The equations of state are no longer
monotonous. Large single peaks, the quantum island states (QIS), develop in the neighborhoods
of minima. The system undergoes oscillations between two kinds of quantum island states, QIS™
and QIS*, as a function of 6. The disintegration and transformation of phases recur periodically as
0 is varied, and the phases in the semiclassical region are followed by consecutive phase structures
in the quantum regime. The subsequent collapses and revivals of phases are directly connected
to the Jaynes-Cummings collapse and revival. The observation of these phase structures and the
accompanying QIS is experimentally feasible.

PACS 42.50.Dv, 42.52+x

1. Introduction relations between separate fields [10], or to couple
them to other quantum devices in, for example, atomic
interferometers to test the principle of complemen-

tarity [11].

One of the most extensively studied systems in
quantum optics is the so-called micromaser, or one-

atom maser [1]. It realizes the fundamental Jaynes-
Cummings model [2] by coupling a single quantized
mode of a high-Q microwave cavity to a sparse beam
of two-level atoms. Due to the relatively straight-
forward theory [3, 4] and experimental accessibil-
ity, it has proved to be particularly well suited to
study quantum effects in the interaction between ra-
diation and matter. Genuine quantum features have
been predicted and observed, such as, e. g, the Jaynes-
Cummings collapse-revival [5], nonclassical photon
statistics including number states [6], trapping states
[7], quantum island states [8], and macroscopical su-
perpositions [9]. It has also been suggested to build
macroscopic correlated systems by coupling two mi-
cromasers together to study nonlocal quantum cor-
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In the present paper we study the photon statistics
of a micromaser pumped by a monoenergetic beam
of two-level atoms with Poissonian arrival statistics.
It is shown that the photon distribution consists of
distinct phases. We study their structure in the two-
dimensional space given by the pump parameter 6
and the photon number £. A correspondence between
the quantum [3] and semiclassical [4] theories of the
problem will be pointed out and used to find the equa-
tion of state of the phases. The photon statistics of
the system can be separated into “semiclassical” and
“quantum” regimes with very different behaviors due
to the crucial role of the quantized nature of the field in
the latter regime. We show that this picture of phase
structures in the photon statistics can explain sev-
eral features of the micromaser both qualitatively and
quantitatively.

In Sect. 2 and 3 we investigate the semiclassical
and quantum regimes of the system, respectively. Sec-
tion 4 is devoted to summary and discussions, while
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Fig. 1. Density plot of the photon statis-
tics in the semiclassical regime for
Nex = 100 and 7, = 0.5. Lighter points

in the Appendix we derive some of the necessary for-
mulas used in the paper.

2. The Semiclassical Regime

Let us consider a micromaser [1] where a sin-
gle quantized mode of a high-Q microwave cavity
is pumped by a monoenergetic beam of excited two-
level atoms. Assuming that there is at most one atom
present in the cavity at a time and that the interaction
time, 7, is much shorter than the cavity lifetime, 1/7,
the photon statistics can be calculated as [3]

pn(8) = po®) [ E(k. 6),

2.1)
k=1
where
E(k.6) = —ﬁ“—m 0) + —2 2.2)
T k@ + DT iy + 1 '
and
B(k,8) = sin® (81/k/Nex). (2.3)

Here, the average number of atoms inside the cavity
during the cavity lifetime is given by Ne = /7,
where r is the average rate of injection of the atoms,
and the pumping parameter is defined by 6 = g7v/N
where g is the atom-field coupling constant. Finite

in the figure show higher probabilities.
Bright ridges form a phase structure of
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Fig. 2. Stable and unstable solutions of the semiclassical
theory depicted by light solid and dotted lines, respectively.
The stable solutions correspond to the bright ridges in Fig-
ure 1. The average photon number (n), calculated from the
photon statistics of Fig. 1 is represented by a heavy solid
line showing the transitions that the system makes between
the phases as a function of the pumping parameter 6.

thermal radiation is also assumed, specified by the
average number of thermal photons 72,

Figure 1 indicates that the above photon statistics
specifies an ensemble of phases in the -k space where
small changes in the pumping parameter # result in
small changes in the photon number k. The smooth
evolution along the phases is periodically interrupted
by abrupt transitions between them at certain criti-
cal values of 4. Their structure is clearly reminiscent
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Fig. 3. Photon statistics for # = 60 and 120 depicted by
dotted and solid lines, respectively. The envelope of the
peaks is a bell-shaped curve that is fairly independent of 6.

of the (multi-) stable steady states of the semiclassi-
cal theory [4], illustrating the connection between the
quantum and the semiclassical approach (cf. Figs. 1
and 2). Employing the stable (unstable) solutions for
the semiclassical steady states, this correspondence
can be used to determine the location of the peaks
(minima) and the equation of state for the phases
of the photon statistics. It is, however, unique to the
quantum theory to provide a probability distribution
and to account for the effects originating in the shape
of the photon statistics. This is beyond the grasp of
the semiclassical approach. Let us now review some
of these quantum effects. It can be seen in Figs. 1,
6 and 7 that, apart from some exceptional cases, the
photon statistics is confined to a narrow region of
the photon number &, centered around approximately
40% of N. The envelope of the peaks is a bell-
like curve (see Fig. 3) that is fairly independent of 4.
Multipeaked photon statistics arise when the phases
populated in this region of k overlap at a given pump
parameter 6. This overlap forces the system to switch
from one phase to the next via a first order phase
transition accompanied by a sudden increase in the
photon number noise [1, 3, 4, 8]. Figure 2 illustrates
how the quantum treatment results in a suppression of
the multistable behavior. The average photon number
becomes single-valued as it selects between the avail-
able branches of the semiclassical theory according
to the probability distribution of the quantum theory.
It can be seen, however, that the phase transitions de-
cay to a f-independent constant value as the number
of overlapping phases increases. This occurs because,
due to the increasing number of the peaks under the

Fig. 4. Density plot of the photon statistics for Nex =30 and
7, = 0. The distinct bright spots are the probability peaks
of the trapping states. The dark lines parallel to the k-axis
above the peaks indicate how the probability distribution
is blocked and the system is forced back to a lower order
phase in this case.

bell-curve, the average photon number becomes less
sensitive to the appearances of new peaks. This ef-
fect is directly related to the Jaynes-Cummings col-
lapse [5] since the atomic inversion, w, is a simple
function of the average photon number (n) given by
w =1—2((n) — M) /Nex (see derivation in the Ap-
pendix). In the case of no thermal radiation 7, = 0,
the trapping states play a role [7]. They significantly
modify the phase structure by trapping the system in
a lower order phase in certain narrow regions of the
pumping parameter 6 (see Figure 4).

As we mentioned above, we can make use of
the correspondence between the quantum and semi-
classical theories to find the equation of the phases.
The semiclassical steady states are determined by the
equation (see [4] and an alternative derivation in the
Appendix)

8\/(ko + 1)/Ney = FArcsin (\/(ko - ﬁb)/Nex> +1m,

(2.4)

where the minus (plus) sign corresponds to the stable
(unstable) solutions depicted by solid (dotted) lines in
Fig. 2, while ! =0, 1, 2, ... enumerates them. It can be
seen by comparing Figs. 1 and 2 that the peaks (min-
ima) of the photon statistics coincide with the stable
(unstable) solutions. Equation (2.4) can be simplified
if we assume a small number of thermal photons,
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Ty ~ 1, and also 1 < kg < Nex. This latter assump-
tion simply accounts for the photon statistics being
confined to a narrow region of the photon number
around 0.4 N. This way, the first term on the right
hand side of (2.4) can be reduced to F+/ko/Nex. On
the left hand side we can neglect the +1 provided

0/ (ko + 1)/Nex — 0y/ko/Nex < 1 (2.5)
in a vicinity of ko. This difference can be approxi-
mated with 61/4kgNe for kg < 1, yielding the fol-
lowing condition for the pumping parameter:

6 <« \ kONex-

In this region of the parameters the quantized nature
of the field does not play a significant role and, there-
fore, we call it the “semiclassical” regime of the mi-
cromaser. Since there cannot be peaks for kg > N
[8], this condition tells us in short that # cannot be
larger than N in this regime. Using these approxi-
mations, (2.4) reduces to the simple expression

It \*
ko+ = Nex <m> ,

determining the location of the peaks and minima of
the photon statistics ko+ for a given 6 in the semi-
classical regime taking the plus and minus signs, re-
spectively. The system exhibits a structure consisting
of continuous and smooth phases here, as depicted
in Figs. 1, 2 and 6. However, as we will show later
on, these phases will be disintegrated and reshaped at
high pumping parameters beyond the region of (2.6)
where the discreteness of the photon number becomes
significant.

The same result can be obtained by using the func-
tion E(k,0) from the quantum solution, as given
by (2.2). One finds a peak (minimum) of the photon
statistics at a photon number, ko, if E(kg,0) >1(< 1)
and E(ko+1,0) <1 (>1). In the case when the change
in the function E(k, 8), produced by one discrete step
of the photon number from K to ko + 1, is small, the
quantum nature of the radiation field is not significant
and these two conditions can be approximated in a
neighborhood of kg > 1 by

(2.6)

Q.7

E(ko,6)=1and *+ <%—f> (ko,8) > 0. (2.8)
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Fig. 5. The function E(k,6) and its discrete counterpart
Ex(0), depicted by solid and dashed lines, respectively, for
6 =40, Nex = 100 and 1, = 0.5. For these parameters the two
functions agree rather well. The agreement will disappear
for larger 6.

Here the upper (lower) sign corres ponds to a peak
(minimum). In order to specify the region where
these conditions are valid and to visualize the ef-
fect of the quantized photon number let us define
the discrete counterpart, E(#), of the continuous
function E(k, 6), as the curve connecting the discrete
points (k, E(k,6)) taken at integer values of k, by
straight lines. The continuous function E(k, §) oscil-
lates faster for larger 6 (and smaller k), suggesting
that E(#) will deviate from it high above threshold
(and at small photon numbers). We find that E(6)
follows E(k,6)slowly with k in a neighborhood of
ko, i.e., if the conditions given by (2.5) and (2.6) for
ko > 1 apply. In this region of the parameters, i.e., in
the semiclassical regime, E}(f) can be approximated
by the continuous function E(k,#), and (2.8) can be
used. An example for this case is depicted in Fig. 5,
while the deviation between the two functions is ap-
parent in Figs. 9 and 10 that will be discussed later
on in detail. One can see in Fig. 5 that E(k.#) is an
oscillatory function and its minima are given by the
curves

5
Z

02 kmin = (7)* Nex, (2.9)
in the -k space, where [ is an integer. Expanding
E(k, ) with respect to 6 for a given kg around one of
the minima 6,;,, we find that £ < 1 if O, — 1 <
6 < Bmin + 1, provided ky < Nex. The derivative of
E(k,6) with respect to k in the vicinity of kg > 1
at the lower (upper) end of this interval is negative
(positive). Thus, considering the above conditions for
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Fig. 6. Density plot of the pho-
ton statistics for Nex = 100 and
np = 0.5. The bright ridges of
the semiclassical regime become
diffuse for large 6 as the system
approaches the quantum regime.
They disintegrate because, due to
the increased slope of the phases,
the discreteness of the photon
number becomes more significant.

peaks (minima) of the photon statistics (2.8), we find
for 1 <« ky < N that they are located on curves
shifted downward (upward) by 1 with respect to the
curves of the minima of the function E'(k, 6). Carrying
out this shifting in (2.9), we reobtain the same result
as in (2.7). It determines the location of the peaks and
the minima of the photon statistics in the so-called
semiclassical regime of the micromaser specified by
the condition (2.6).

3. The Quantum Regime

It can be seen in Fig. 6 that the photon statistics be-
come diffuse as one increases the pumping parameter
0 beyond the semiclassical regime. The reason for this
is that the granular feature of the phases originating in
the discreteness of the photon number becomes sig-

Fig. 7. Density plots of three regions of the photon statistics in the quantum
regime of s = 1 for N = 100 and 7, = 0.5. Bright ridges and well localized
spots are apparent, showing the phase structure and the accompanying quantum
island states of the system, respectively .

nificant as a result of their increased slope. Namely,
the branches of the stable steady state solutions of the
semiclassical theory get closer to each other than one
quantum of the photon number, resulting in a disinte-
gration of the phases of the photon statistics. Based on
the dominant role of the quantized nature of the radi-
ation field we call this region of the parameters where
(2.6) does not apply the “quantum regime” of the mi-
cromaser. However, as it can be seen in Fig. 7 the frag-
ments of the disintegrated phases of the semiclassical
regime form new structures at larger pumping param-
eters. The diffuse region is followed by an ensemble
of new kinds of apparently smooth phases accompa-
nied by sharp single peaks, the so-called “quantum
islands” [8]. The formation of the new phases can be
understood as another way to connect the location of
the nonzero probabilities of the disintegrated phases
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on the discrete lattice of the photon number. These
new connection rules can be determined by introduc-
ing a new parametrization of the phases. Since there
are several ways to connect the probability points,
therefore, there are several possible connection rules
and phase parameters that can be introduced. Let us
define a new parameter L as L = [ — sko, where kg
is the photon number, s =0, 1, 2,... parametrizes the
different connection rules and L is integer. The [ pa-
rameter of the semiclassical regime can be reobtained
for s = 0, while several new ones are given by s > 0.
Substituting the new [ into (2.4) we obtain

81/(ko + 1)/ Nex = FArcsin (\/(ko = m)/xex)

+ (L + sko)r.

(3.1)

Since the disintegration of the old phases and the for-
mation of the new ones is a direct consequence of
the quantized nature of the radiation field, (3.1) has
nothing to do with the semiclassical theory unless s
= 0. However, it can now be used to find the location
of the peaks (minima) of the photon statistics in the
quantum regime the same way as we used (2.4) before
for the semiclassical region. The correspondence be-
tween (3.1) and the quantum phases is apparent in the
examples depicted in Figs. 7 and 8 for s = 1. The solid
(dotted) lines in Fig. 8 coincide with the peaks (min-
ima) of the photon statistics in Figure 7. The curves
with a solid branch on their lower (higher) photon
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Fig. 8. Phase structure given by
(3.1), where the phases and the
minima are depicted by light solid
and dotted lines, respectively. The
light solid lines correspond to the
bright ridges in Figure 7. The av-
erage photon number, (n) , calcu-
lated from the photon statistics of
Fig. 7 is represented by a heavy
solid line. The phase transitions
of the system between the quan-
tum islands as a function of 6 are
clearly visible in the middle figure.

number sides correspond to the upper (lower) sign in
(3.1). The average photon number is depicted by a
thick solid line in Figure 8. The disintegration of the
phases of the semiclassical regime, s = 0, led to the
formation of the s = 1 quantum phases. This is true
in general. A disintegrated phase structure of order s
is followed by a set of new phases and quantum is-
lands of order s + 1. The single semiclassical regime
is followed by several consecutive quantum regions.

It can be seen in Figs. 7 and § that the phases in the
quantum regime are not monotonous curves in the 6-k
space as they were in the semiclassical region. Their
minima, i.e. the minima of the equations of state of
the phases 6 = 6(k), are located at

k™" ¥ /s and §™" = 27v/sLNe F 1, (3.2)

provided 1 <« k™" <« N,,. These points are im-
portant because, as we will see later on, large single
peaks, the quantum islands, can arise in their vicinity
due to the small slope of the phases. In order to under-
stand this and to find a compact formula for the peaks
(minima) of the photon statistics, we make use of the
function E(k, ) and its discrete counterpart Ey(6),
again. These functions are useful in explaining why
the two branches of each curve in Figure 8 alterna-
tively represent peaks (solid lines) and minima (dot-
ted lines) of the photon statistics. The equation for the
minima of E(k,#), in terms of the new parameter L,
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can be obtained from (2.9) as

Ominkmin = (L + 8kmin) 71* Nex. (33)
As a consequence of the nonzero s, the curves 6 =
6(k), describing the minima of the function E(k,6),
as obtained from (3.3), themselves exhibit minima in
the 6-k space at

kmin = L/S and Oyn = 27/ SL N, 34
provided 1 < kmin. The location of the peaks (min-
ima) of the photon statistics can now be calculated
similarly to the semiclassical region by shifting the
curves of (3.3) by 1 provided kmin < Nex. Thus,
we reobtain the results for the extremal points of the
phases/minima given by (3.2) above as k™" = kyN
and ™" = @y~ F 1. However, due to the non-
monotonous feature of the curves, in this case a shift
downward (upward) will give us the peaks (minima)
only for photon numbers, £ < kmn, while opposite
shifts are necessary for k& > kpmn. This is why the
two branches of the curves in Fig. 8 alternatively rep-
resent the peaks and minima depicted by solid and
dotted lines, respectively. Therefore, the equations of
the phases of order s are given by

(0 £ 1)%ko = [(L + sko)]* Nex, (3.5)
where the upper (lower) sign corresponds to the peaks
(minima) of the photon statistics for the lower region
of the photon numbers, k < kmin, while for the upper
part of the photon numbers, k£ > kmN, the + signs
need to be switched to . Combining these condi-
tions, we finally obtain for a given 6 the location of
the peaks along one of the phases of the photon statis-
tics in the quantum regime as

g 2
kO:t =’;f2\4i [O:tIIFV(O:l:I)z—Hﬁ,"N] 1(36)

MIN

where kyin and fyn determine via s (> 0) and L
the actual phase that we are considering (see (3.4)
above), and the upper (lower) sign gives us a peak
below (above) the minimum kwmy of the actual phase.
The expression for the minima of the photon statistics
can be obtained by switching the two signs, + — F.

It can be seen in Fig. 7 that all the phases in the
quantum regime exhibit sharp peaks in the vicinity
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Fig. 9. The functions E}(f) in the upper, and the corre-
sponding photon statistics in the lower part of the figure
for four different pumping parameters: 6 = 286 and 288,
depicted by solid and dotted lines in the left, and 6 = 481
and 483, depicted by solid and dotted lines in the right part
of the figure, respectively.
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Fig. 10 The functions Ex(6) in the upper, and the corre-
sponding photon statistics in the lower part of the figure
for four different pumping parameters: 6 = 393 and 395,
depicted by solid and dotted lines in the left, and 6 = 397
and 399, depicted by solid and dotted lines in the right part
of the figure, respectively.

of the minima of their state equation lines. Suppress-
ing everything else at optimum pumping they are the
only significant features of the photon statistics (see
Figures 9 - 11). These are the so-called “quantum is-
land states” (QIS) discussed in [8] in detail. It follows
from the product form of (2.1) that high peaks in
the photon statistics are generated when the oscilla-
tions of E,(6#), as a function of k, are slow. There
are long intervals in this case where E}.(0) is steadily
smaller (larger) than 1 and, consequently, the proba-
bility px(6) is monotonously decreasing (increasing).
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Fig. 11 Three dimensional plot of the photon statistics ex-
hibiting consecutive quantum island states, QIS ™ and QIS™.

This, after normalization, will result in a large peak
at the beginning (end) of the in terval. One would
expect from (2.3) that the oscillations are faster for
larger pumping parameter €, resulting in rapidly os-
cillating photon statistics. However, this is not so.
Although the oscillations of E(k, #) are faster, its dis-
crete counterpart E(f) can deviate from it in the
quantum regime as a consequence of the discreteness
of the photon number. The oscillations of Ej(f) are
particularly slow in the neighborhoods of the minima
of the phases in the #-k plane due to the small slope
of the phase curves. Some examples are depicted in
Figs. 9 and 10 exhibiting long intervals where the
E;(0) functions are steadily smaller or larger than
1, resulting in the corresponding QIS shown under-
neath. The two kinds of slowly varying intervals can
be interpreted as two special cases of the Moiré-effect
between the oscillations of E(k, #) and the discrete pe-
riodic lattice of the photon number. Suppressing most
of the photon statistics, this effect plays the role of
a trapping mechanism making the QIS the “trapping
states” in the quantum regime. This trapping effect
has obviously nothing to do with the one in [7]. Here,
the QIS are the consequence of the quantized nature of
the radiation field and the coherent oscillatory nature
of the atom-field interaction, reflected by the function
B(k, ) in (2.3). Just as the entire phase structure of

the photon statistics, these states, too, are insensitive
to (a moderate amount of) thermal radiation.

The two kinds of slowly varying “Moiré-intervals”
also suggest that there are two kinds of quantum island
states, QIS™ and QIS*, depending whether Ey(6) is
smaller or larger than 1 in that particular interval, re-
spectively. Therefore, QIS™ (QIS*) are sitting on the
low (high) photon number sides of the phase curves,
close to their minima (cf. Figs. 7 and 8). Their exact
locations can be calculated using (3.6) provided 6 is
known. However, the optimum pumping, s, that
produces the largest single peaks is, in general, diffi-
cult to determine due to the complicated structure of
E (). Considering Figs. 7 and 8 it can be said that
the largest peaks can be produced using a s that
is equal or slightly smaller than the minimum of a
phase curve, #M", Using ™" = fyn F 1, we obtain
the optimum pumping to produce QIS as

Bist ~ OuiN T 1. (3.7)

where the upper (lower) sign corresponds to QIS*
(QIS™), and By is given in (3.4). However, these
are only the possible locations of the QIS. Although
a long constant interval of Ej(6) in the vicinity of
the minimum of a phase is necessary for the build-up
of a large QIS-peak, it is not, in general, sufficient.
As it can be seen in the examples of Fig. 9, QIS™
(QIS*) cannot be generated on the high (low) pho-
ton number side of the photon statistics. This is a
consequence of the product form of the photon statis-
tics given by (2.1) and the confinement of the photon
statistics around 0.4 Ng. There is no such problem
in Figure 10. Both QIS™ and QIS* can be produced
in that region of the pumping where the minimum
of the phases (and the corresponding long interval of
constant E(f)) are situated in the main stream of
the photon statistics, i.e. around £ = 40 in our exam-
ple. Apart from the rapid transitions between them,
the micromaser resides in either QIS™, or QIS* (see
Figs. 7 and 8). Therefore, any pumping will result in
large single peaks in this region although the optimum
cases are still determined by (3.7).

In general, due to the isolated large QIS-peaks, iso-
lated phases become greatly populated in this region
of # at the expense of the others. Similarly to the
beginning of the semiclassical regime, there is practi-
cally no overlap between the populated parts of these
dominant phases that makes the phase transitions
abrupt between them. This suggests the interpretation
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Fig. 12. Average photon number, (n), for Nex = 100 and
iy = 0.5, showing consecutive collapses and revivals be-
longing to the s = 0 semiclassical and s = 1, 2 quantum
regimes.

of the oscillations between the well-defined phases,
i.e. between QIS™ and QIS*, as a revival of the phase
transitions following the collapse in the semiclassical
regime. We should remark here that there are apparent
differences in the characteristics of the phase transi-
tions and their collapses between the semiclassical
and quantum regimes due to the different origins of
the phase structures themselves. The phase transitions
between QIS™ and QIS* result in the oscillations in
the average photon number, (n), as depicted in Figs. 8
and 12. Since (n) is simply related to the atomic pop-
ulation (see in the Appendix) the same kind of oscil-
lations can be found in the atomic inversion. There-
fore, the collapse of the oscillations in the semiclas-
sical region and their revival in the quantum regime
are directly connected to the Jaynes-Cummings col-
lapse and revival effect [5]. As we mentioned above
there are several consecutive structures in the quan-
tum regime parametrized by s > 1 (there is only one
in the semiclassical regime, s = 0). The disintegration
and reshaping of the phase structures, therefore, cor-
respond to a collapse in the semiclassical region and a
sequence of consecutive collapses and revivals in the
quantum regime, as depicted in Figure 12.

The different regimes of phases can, especially for
small Ney, overlap. This usually mixes the phase struc-
tures up although, at particular pumping parameters,
also allows for a production of (incoherently) super-
posed QIS corresponding to different regimes. In the
example depicted in Fig. 13 the QIS* around &k = 62
belongs to s = 2 while QIS ™ around & = 22 belongs to
s =3 resulting in two well-separated coexisting sharp
peaks. We have chosen N = 100 in this paper in
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Fig. 13. The photon statistics at § = 943 exhibit a super-
position of two well-separated quantum island states, QIS*
(high) and QIS™ (low photon number), belonging to the
s =2 and s = 3 quantum regimes, respectively.

order to separate the different structures in the quan-
tum regime for better presentation. However, as it
can be easily seen from (3.4), the same phase struc-
tures and corresponding QIS arise for lower Ny, as
well, at smaller pumping parameters. We, therefore,
conclude that the experimental realization of these
features of the photon statistics including, in partic-
ular, the quantum island states is possible especially
for lower values of N.

4. Summary

In the present paper, the photon statistics [3] of
the micromaser [1] have been studied in the two-
dimensional space of the pumping parameter ¢ and
photon number k. We have found that the peaks of
the probability distribution form various phase struc-
tures in this space transforming into one another as
the pumping parameter 6 increases. The first group
of phases is situated in the so-called “semiclassical”
regime determined by the condition given in equa-
tion (2.6). The curves of these peaks are monotonous
and coincide with the stable steady state solutions
of the semiclassical theory [4]. Their structure, to-
gether with their populations, i. e. the probability
distributions along them, result in typical features
in the dynamics of the micromaser, such as the col-
lapsing phase transitions in the average photon num-
ber as a function of . However, when the pump-
ing 6 increases beyond the semiclassical regime, the
phases disintegrate due to the discreteness of the
photon number. The micromaser enters its “quantum
regime”. New kinds of phases are formed from the
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disintegrated fragments of the old ones that are no
longer monotonous. Single large probability peaks,
the so-called “quantum island states” (QIS), can arise
in the vicinity of their minima that have been absent
from the semiclassical regime [8]. In the optimum
cases, the system makes periodic phase transitions be-
tween the two kinds of quantum island states, QIS™
and QIS*. These oscillations as a function of 6, to-
gether with the collapse of the phase transitions in
the semiclassical regime, correspond to the Jaynes-
Cummings collapse and revival. The disintegration
and transformation of the structure of phases recur
periodically as 6 increases, and the group of phases
in the semiclassical region is followed by a sequence
of phase structures in the quantum regime. The mean
photon number (n) exhibits periodic collapses and
revivals corresponding to each structure. Experimen-
tal demonstration of these phase structures, including
the quantum island states, appears feasible using the
presently available facilities.
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Appendix

Let us consider the master equation of the micro-
maser for the interaction-picture field density matrix,
p, given by [8]

d
—’t’ = 1(CpC + S pS) + Lp,

3 (A.1)

where, in the gain term, C' = cos(g7Vaa'), S =
[sin(g7Vaa')/Vaa']a, and the loss term reads as

Lp= % (@ + 1)2apa’ — a'ap — paa’)
. . . (A2)
+7(2a'pa — aa’p — paa’)

The equation of motion for the average photon num-
ber is [3]

%(m =r <sin2(gr\/ﬁ)> — 7((n) — 7). (A3)
The same result can be obtained when, assuming sep-
arable gain and loss cycles in the case of 7 < 1/,
we use the return map given by

p(k+l) - eﬁ/r(cp(k)c+5‘i'p(k)5)’ (A4)
where £ is the number of atoms that have traversed the
cavity and 1/r is the mean time interval between the
atoms for Poissonian pumping statistics. Approximat-
ing the time derivative of (n) with r({n)**! — (n)*))
and assuming 1/r < 1/~, i.e. the cavity lifetime
much longer than the time interval between the injec-
tion of atoms, we reobtain (A.3). The semiclassical
rate equation is found by approximating the quan-
tum expectation values by their semiclassical coun-
terparts as

d 9
d—: = rsinf(grvn+ 1) —v(n — ), (A.5)
that results in (2.4) at steady state.

Calculating the atomic density matrix as

Pratom)(T) = Tr(fierq) [Z’{(T)p(atom)(o) ® P(O)UT(T)]
(A.6)

where U/ is the time evolution operator of the Jaynes-
Cummings model, pom)(0) and p(0) are the initial
density matrices for the atom and the field, respec-
tively, the matrix element for the lower atomic state
is found to be py, = (sinz(grm», provided we
started with initially excited atoms, p,, = 1. This can
be substituted into (A.3), and we obtain

2 (n) = rogy — 7((n) — ). (A7)
dt

Therefore, the steady state average photon number,
(n)ss, is directly connected to the final atomic popula-
tion as pyy Nex = (n)ss — Ty , resulting in the inversion,
W = Paa — Pbb, giVen by

(A.8)
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